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Ray extensions of the regular representation of noncompact non-Abelian Lie 
groups are examined as generalizations of the Cartesian coordinate representa- 
tion of ordinary quantum mechanics to the case of generalized non-Cartesian 
coordinates and generalized noncommuting momenta. (The momenta are in fact 
the generators of the representation, and so they satisfy the Lie algebra of the 
group.) The concept of configuration ray representation is introduced within this 
new kinematic formalism as subrepresentations of the regular representation 
which are embossed with the "relativity theory" of a given system. The main 
features of the mathematical formalism leading to these representations in 
configuration spacetime are discussed, and their importance for non-Abelian 
quantum kinematics and dynamics is emphasized. Two miscellaneous examples 
on the calculus of phase functions for configuration ray representations are given. 

1. INTRODUCTION 

In a previous paper (Krause, 1987; hereafter referred as paper I) we 
have presented a rather simple formalism of 2-cocycle calculus for unitary 
ray representations of Lie groups. This formalism may be especially 
attractive to physicists, in general, since it can be used in quantum theories 
without requiting a working knowledge of cohomology (Michel, 1964). In 
this paper we wish to examine this matter further, from the special 
standpoint of its applications in non-Abelian quantum kinematics and 
dynamics. 

Although the method used in paper I is not specific to a particular 
unitary representation, the analysis and calculations made in that paper 
were anchored on the group manifold. The group manifold is usually not 
the cartier space of the relevant realizations of Lie groups in physics. 
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Nevertheless, as a matter of fact, our approach to 2-cocycles is general 
enough and means no restriction on the method of exponent factor calculus 
(see also Houard, 1977). 

The same approach has been used recently for studying a possible 
connection between non-Abelian quantum kinematics and dynamics for 
noncompact Lie groups (Krause, 1993c). However, a systematic, general, 
and detailed discussion of the mathematical tools one need to use in order 
to apply the ideas of quantum kinematics to quantum dynamics is still 
missing in the literature. We devote this paper to filling this gap. 

So, the present work has a purely instrumental character. It bears some 
interest for physics, however, for it presents in a simple fashion new powerful 
group-theoretic techniques which may have many useful applications in 
quantum theories (see, for instance, Krause, 1986, 1988). For the physical 
motivation of non-Abelian quantum kinematics, in general, we refer the 
reader to our previous work (Krause, 1993b, and references quoted therein). 

There are two well-known facts we would like to recall concerning this 
issue. First, the functions g(q'; q) (which combine the parameters q' and q 
according to the composition law of the group) may themselves be consid- 
ered as defining two separate point symmetry groups (the first-parameter 
group G~ and the second-parameter group G2), which are in fact isomorphic 
with the original group G because they have the same group manifold 
M(G) = {q} and because the laws of composition are essentially the same 
for Gl, G2, and G. Strictly speaking, G2 is antiisomorphic with G, since it 
is isomorphic when the group elements are taken in the reverse order. [For 
these and other details see Racah (1965).] Moreover, the group manifold 
itself is the homogeneous carrier space of these self-realizations of G; so 
one does not need to consider an extraneous space for visualizing the 
action of the group. 

The other fact concerns the regular representation of Lie groups, 
which is a subject that has been amply studied by mathematicians 
(Naimark and Stern, 1982). Indeed, the regular representation has the 
peculiarity of being another self-contained faithful construct whose build- 
ing blocks belong exclusively to the group structure itself, since the cartier 
Hilbert space ~ ( G )  is defined on the group manifold M(G) by means of 
the invariant (right and left) measures obtained from the composition law 
g(q'; q). This feature makes the regular representation an outstanding 
group-theoretic notion. Because of this same feature, however, the regular 
representation has not yet played an explicit role in quantum theory, since 
it appears as a formalism that lies far away from the concrete physical 
pictures on which Lie groups operate. 

Notwithstanding this fact, there is one good reason to choose the 
regular representation as the cornerstone of quantum kinematics if one 
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wants to generalize the canonical quantization rule (Komar, 1971) beyond 
the Heisenberg commutation relations that have been used hitherto in 
ordinary quantum mechanics (Krause, 1985, 1993c). Obviously, Heisenberg's 
quantum kinematics (Weyl, 1931) is not valid in the case of generalized 
momenta satisfying a non-Abelian Lie algebra (Yamada, 1982). [Angular 
momenta are not an exception to this contingency, because in quantum 
mechanics one does not "quantize" the canonical conjugate variables of 
non-Abelian momenta (e.g., Euler angles).] Now, the point is that the 
standard Heisenberg commutation relations are intimately related with the 
regular representation of the Abelian group of rigid translations in a Cartesian 
affine manifold; in this sense they appear as a necessary and sufficient con- 
struct indeed (see, e.g., Messiah, 1961). Hence, the well-known dictum: "one 
must quantize only in Cartesian coordinates" follows. Certainly, this is not 
a satisfactory state of affairs (Komar, 1971). As a matter of fact, we 
see that the regular representation plays an outstanding role in ordinary 
quantum mechanics, at least in that unique case corresponding to Heisen- 
berg's Abelian quantum kinematics of rigid Cartesian translations, which 
does not correspond to a universal symmetry, however (Krause, 1993c). 

It is clear that the (left and right) regular representations of Lie groups 
are intimately related with the (left and right) self-realizations G1 and G2 
mentioned above. These two self-contained structures settle the theoretical 
framework for having non-Abelian 'wave mechanics' over the group mani- 
fold arena (Krause, 1985). To this end, one quantizes the group associating 
its parameters q" with a set of commuting Hermitian operators Qa, which 
act within the rigged Hilbert space ~ ( G )  that carries the regular represen- 
tation. The Q's are generalized 'position' operators of the group manifold; 
they yield the 'Q-representation' of G in ~(G) ,  even if the group is 
non-Abelian. On the other hand, the generators of the representation are 
Hermitian operators on their own right. Thus one obtains generalized 
Heisenberg commutation relations as well as a generalized Heisenberg- Weyl 
quantum-kinematic (closed) algebra. Furthermore, it can be shown in this 
manner that every r-dimensional Lie group has a set of r quantum-kine- 
matic &variant operators, which substantially differ from the traditional 
invariant operators of Lie algebras and their enveloping algebras (Krause, 
1991). Also, boson ladder operators have been found, quite generally, within 
the quantum-kinematic formalism of noncompact Lie groups (Krause, 
1993a), and their associated coherent states have been discussed recently 
(Krause, 1993b). So one finds enough structure in order to build a rich 
non-Abelian quantum kinematics which generalizes the standard Heisen- 
berg kinematics in a rather natural way. 

To be sure, in this fashion one expects to obtain meaningful dynamical 
quantum models if G is a physically relevant Lie group (Krause, 1993c). 
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However, one has to recognize that in the applications of unitary ray 
representations to quantum kinematics, 2-cocycles anchored on M(G) x 
M(G) are contrived to produce quantum models which look very different 
from ordinary wave mechanical (e.g., Schrrdinger) models; therefore their 
physical interpretation becomes blurred. Certainly, quantum kinematics 
needs a configuration description of the model, which should be concor- 
dant with the 'special relativity' theory of the system one wants to quantize 
(Mariwalla, 1975). Lie groups often appear in physics as point symmetry 
transformations of some preassigned space which has a clear physical 
significance. One refers to such realizations of Lie groups as geometric 
realizations (Olver, 1986). Accordingly, if non-Abelian quantum kinematics 
is able to afford a new foundation of quantum mechanics, we should have 
a general prescription for settling a ray representation which is directly 
embossed on any given geometric realization of a Lie group acting in the 
configuration space of a system. Thus we could attain a quantum formal- 
ism which would be intrinsically 'relativistic' in a very ample sense (see also 
Krause, 1993c). 

Specifically, this paper is devoted to the task of developing such 
a formalism of configuration ray representations of noncompact Lie 
groups under the assumption that these are subrepresentations of 
the regular ray representation. To this end we here follow the same 
method already employed in paper I, but now G acts on a given homoge- 
neous space X, corresponding to the configuration space of a G-invariant 
system. 

The contents of this paper are as follows. In Section 2 we begin our 
study of configuration ray representations of a given Lie group. This 
section is devoted mainly to presenting a very simple technique for calculat- 
ing the required exponents (i.e., phase functions) without using cohomolog- 
ical notions, which are reserved to specialists and remain unknown to most 
physicists. Section 3 is a short study of the gauge freedom of configuration 
ray representations. In Section 4, the generating wave function of a 
configuration ray representation is considered. (From the standpoint of 
quantum kinematics, this is the heart of the matter.) Section 5 contains two 
miscellaneous examples of non-Abelian phase calculus. Finally, in Section 
6 we add some concluding remarks concerning quantum kinematics and 
dynamics. 

In this paper we shall not repeat the general formalism of non-Abelian 
quantum kinematics, which has already been developed in our previously 
published work on this subject. Rather, we assume that the reader has 
some familiarity with that work [in particular, Krause (1993b, Section 2) is 
enough to this end]. Our main reference, however, is paper I, of which the 
present paper is a necessary complement. 
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2. CONFIGURATION RAY REPRESENTATIONS 

Let us consider the central extensions by U(1) of quantum kinematics 
for noncompact non-Abelian Lie groups. It is a well-known fact that 
quantum mechanics does not fix the phase of the vectors describing pure 
states, and one associates such states to rays rather than to vectors. 
Therefore, unitary ray representations should be used in quantum kinemat- 
ics in general. The extension of the unitary formalism of non-Abelian 
quantum kinematics from "true" (vector) to "projective" (ray) representa- 
tions faces no difficulties as long as one is able to calculate the admissible 
two-cocycles of the corresponding group. 

The notation used in this paper is the same as used in our previous 
work. Henceforth, G denotes a noncompact, connected and simply con- 
nected, r-dimensional non-Abelian Lie group, with the following global 
property: there exists a coordinate system q = ( q l , . . . ,  qr) that covers the 
whole group manifold M(G) and maintains everywhere a one-to-one 
correspondence with the elements of G; namely, the coordinates qa 
a = 1 . . . . .  r, are real and provide a set of r essential parameters of G. 
There are many physically interesting noncompact Lie groups for which 
this simplifying assumption holds. (Quantum kinematics, however, is a 
formalism that is independent of this special assumption.) 

In quantum kinematics, G establishes an isomorphism between rays 
that preserves all transition probabilities. Therefore, it is useful to define 
unitary (or antiunitary) operator rays, in analogy to the notion of vector 
rays. In this fashion, according to Wigner's theorem, the operators of the 
isomorphism are representatives selected from the corresponding operator 
rays (Wigner, 1959). Hence, one infers (by well-known arguments) the ray 
representation property: 

U~)(q)U~)(q ') = eiOk (q;q')U(Lk)[g(q; q')] (2.1) 

for the central extensions [by U(1)] of the left regular representation 
of G. The two-cocycle q~k(q; q') is a real-valued function defined globally 
on M(G)• M(G), since G is connected and simply connected (i.e., 
Bargmann's theorem); it is also differentiable everywhere, having continu- 
ous partial derivatives of all orders on M(G)• M(G) (e.g., Iwasawa's 
theorem). Furthermore, since G is connected, it can be shown that 
the operators U~)(q) are necessarily unitary. The same features hold for 
the right regular ray representation. [For these and other details, see Barg- 
mann (1954).] Right now, k is a label for denoting the selection of the 
representative unitary operators. As we have already said, in equation (2.1) 
g(q; q') stands for the group-multiplication functions in the adopted 
parametrization of G. 
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Now, the associative property of the representation (2.1) yields the 
following well-known functional relation for the exponent function: 

~bk(q; q') + ~bk[g(q; q'); q"] = (9k(q'; q") + (Pk[q; g(q'; q")] (2.2) 

This three-point functional relation represents the backbone of two-cocycle 
analysis (cf. paper I). In the applications, it is useful to consider two-cocy- 
cles C~k(q; q') which satisfy the special gauge condition 

#k(q) - C~k(q; q) = tkk(~; q) = 0 (2.3) 

for all q ~M(G), for then it follows that 

U~)*(q) = U~)(t~) (2.4) 

In fact, the/t-gauge (2.3) brings many nice simplifications into the formal- 
ism. We shall assume this gauge in what follows. 

Now, let X =  {x} be the configuration spacetime of a system 
(Trfimper, 1983), and let G be a Lie group of kinematical automorphisms 
acting transitively on X. (For the sequel, it is sufficient to think of X as a 
homogeneous space of G.) The action of G on the events x = 
(x ~ x 1 . . . . .  x n) is realized by a set of point transformations, say 

x 'u = f " ( x ;  q) (2.5) 

/t = 0, 1 . . . .  , n. Note that the xUs are not Cartesian coordinates in general. 
One writes the group law as usual: 

f"[ f (x;  q); q')] = f " [x ;  g(q'; q)] (2.6) 

fu[f(x;  q); g(q'; q")] =f"{f[x;  g(q"; q)l; q'} (2.7) 

In this manner, the action of G on the points x e X  becomes realized by a 
set of point transformations f (G) :  X ~ X  given by equation (2.5), with 
q eM(G), and such that q r e =~ x '  r x. The func t ionsf  u are analytic real 
functions of the q's which are endowed with the group property of G. Thus 
x u =fU(x; e) holds for all x eX. The "intrinsic associativity" (2.7) of t h e f ' s  
is a consequence of the group law (2.6). 

In non-Abelian quantum kinematics we give up the canonical quan- 
tization procedure, following a different path of approach to quantum 
dynamics. (Our approach is in fact more akin with quantum field theory.) 
In order to obtain a configuration quantum model of a system that manifests 
the action of the symmetry group G on X, we do not quantize the preferred 
coordinates (i.e., we give up the usual association x" ~ X" to begin with). 
Instead, we pose the problem of finding kets I x ) =  ] x ~  xn)e~(G)  
(rigged) which are in one-to-one correspondence with x = (x ~ . . . ,  x") eX  
and which under the action of the left unitary ray operators of  G trans- 
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form in a covariant manner with respect to equation (2.5); namely, we 
require 

U~ )(q)lx > = ei k(x;q)lf(x; q) ) (2.8) 

where the exponent ~pk(x; q) is a real-valued phase function. We say that 
such kets carry a configuration ray representation of G on X. (Henceforth 
we adopt the left regular representation as our working frame.) In order to 
tackle the problem set by the existence of such configuration kets in ~u 
one needs to search for necessary and sufficient conditions for the property 
announced in equation (2.8) to hold. 

Let us first examine the phase function. Besides the obvious "initial 
condition" 

q~k(x; e) = 0 (2.9) 

for all x~X ,  it is easy to see that it has to satisfy the functional relation 

~0k(x; q) + q~k[f(x; q); q'] - tPk[x; g(q'; q)] = Ca(q; q') (2.10) 

One can check the consistency of equation (2.10) with equation (2.2). It 
will be shown below that, given the functionfl ' (x;  q) and (ak(q'; q), one has 
enough information for getting a consistent method in order to calculate 
admissible phase functions. 

Two important consequences are immediate. We note that the regular 
ray representation of G requires a configuration ray representation; we also 
note that for a nontrivial ray representation of G the phase q~k(x; q) must 
be a function of x (otherwise, Ck would be a coboundary). By the same 
token, one has 

q~k(x; q) + q~k[f(x; q); q-] = #k(q) = 0 (2.11) 

since we here assume the/~-gauge. 
We next obtain differential equations for the phase functions ~0k(x; q), 

using the same method as introduced in paper I. Thus, we first define a set 
of phase generators; namely 

a(~k)(x) = lim ~aq~k(x; q) (2.12) 
q ~ e  

for a = 1 , . . . ,  r. So performing the limits limq,~et~ and limq~aOa on 
equation (2.10), we obtain the following differential equations for the phase 
function q~k(x; q): 

Xa(q)q~k(x; q) = tr(f)[f(x; q)] - r~)(q) (2.13) 

[Ya(q) -- Za(x)]qJk(X; q) = cr~k)(x) -- l~)(q) (2.14) 
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where Za(x) are Lie differential operators on X; e.g., Za(x) = u~(x)0u, with 
uU(x) = f u (x; q)[q = e" Here we have also used the definitions of the right and 
left exponent generators r~)(q) and l~)(q) given by r(~k)(q) = O" ~bk(q'; q)lq, = e 
and l(~k)(q) = O'~4~k(q; q')]q'= e, respectively. In the same way, one defines Lie 
(right and left) vector fields as X~(q) - Rb(q)Ob and Ya(q) - L~(q)Ob, where 
R b and L b are the (right and left) transport matrices for contravariant 
vectors in M(G), which are obtained from g~(q; q) in the usual fashion; i.e., 
Rb(q) , b ,. = t3ag (q ,  q)lq'=e and Lb(q)= O'~gb(q; q')lq'=r Finally, from equa- 
tions (2.13), one obtains the following inhomogeneous non-Abelian curl 
equations for the phase generators: 

Za(X)Cr(k ) (X)  - -  Z b ( x ) f f ( k ) ( X )  - -  fCabff(ck)(X ) =- - - k a b  (2.15) 

where kab corresponds to the ray constants of the representation (Bargmann, 
1954). 

Let us then consider the converse problem in order to find a synthetic 
(i.e., constructive) standpoint for phase calculus on X x M(G). We first 
observe that equation (2.15) entails a system of linear differential equations 
which must be satisfied by the phase generators tr~)(x) in order to have a 
consistent solution at all. In fact, it can be proved that if one solves 
equation t2.15) and then uses a(ak)(x) as sources to solve equations (2.13) 
and (2.14) with the initial condition (2.9), one finds a phase function 
q~k(X; q) which automatically satisfies the functional relation (2.10). So we 
have the following result. 

Theorem. Given a 2-cocycle ~bk(q'; q), a necessary and sufficient condi- 
tion for the 2-point functional relation (2.10) to hold is that the phase 
function ~0k(x; q) satisfies equations (2.13) and (2.14) with the homoge- 
neous initial condition (2.9). 

We observe that no initial condition at some specified point x0 ~X is 
required to solve these equations. The reason for this is simple: as a 
consequence of the definition (2.12) and of the initial condition (2.9), 
together with the property (cf. paper I): 

r(,k)(e) = l(f)(e) = 0 (2.16) 

the differential equations (2.13) and (2.14) are in fact equivalent, and 
therefore the initial condition (2.9) at q = e is enough for solving these 
equations. 

Hence, given a regular ray representation of G, the method for having 
an allowable phase function of a configuration ray representation is clear. 
Namely (1) using the given set of ray constants, one solves equation (2.15) 
for the phase generators; (2) next, using the generators a(,k)(x) and r~)(q) 
[or /(k)(q)] as sources, one solves equation (2.13) [or, for that matter, 
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equation (2.14)] with the initial condition (2.9); and (3) one thus obtains a 
phase function q~k which satisfies the 2-point functional relation (2.10). 
(However, the solution is not unique, as we shall discuss presently.) 

Finally, let us also briefly consider the possibility of having a configu- 
ration ray extension associated with the regular vector representation of G. 
In this case, instead of equation (2.15), one has to solve the homogeneous 
non-Abelian curl equations: 

Za(X)ab(X) -- Zb(x)a.(x) -- f~bac(X) = 0 (2.17) 

It can be shown that the linearly independent solutions to these equations 
are necessarily of the trivial form 

o'a(x) = Za(x)2(x) (2.18) 

where 2 is a function of x that remains undetermined. If one substitutes this 
solution into equation (2.13) [with ro(q) -O] one gets 

Xa(q)~o(x; q) = Za[f(x; q)12[f(x; q)] = Xa(q)2[f(x; q)] (2.19) 

from which the phase function 

~p(x; q) = 2[f(x; q)] - 2(x) (2.20) 

follows. When this expression for q~(x; q) is substituted into equation (2.14) 
[with la(q) = 13] it yields an identity indeed. One easily checks the functional 
relation (2.10) when qffx; q) is of the form (2.20) and ~b = 0. 

The phase function ~o(x; q) that figures equation (2.20) corresponds to 
a coboundary of G in X x M(G). The interest of having configuration ray 
extensions attached to the "true" (i.e., vector) regular representation is not 
purely academic. In fact, it is well known that many physically relevant Lie 
groups do not admit genuine central ray extensions by U(1), because the 
associated Lie algebras are such that some ray constants are necessarily 
zero (k~b = 0), while the others are all trivial (i.e., they are coboundaries of 

C the Lie algebra of the form kab--f~bkc) (cf. paper I). All compact Lie 
groups [like all SU(n), for instance] share this property; all its 2-cocycles 
~b(q; q') are just coboundaries in M(G) x M(G), so they are gauge artifacts 
and, as such, they can be eliminated (cf. next section). The most conspicu- 
sous example of a noncompact Lie group having this property is the 
Poincar6 group ~ +  (1, 3) [though not so the Poincar6 group ~ +  (1, 1) in 
2-dimensional Minkowski space]. However, this is not to say that a 
coboundary ~0(x; q) in X x M(G) is useless in quantum kinematics. To the 
contrary, such phase functions stem from the direct product U(1) x G, 
since they correspond to a local action of U(1) on the configuration kets 
Ix) associated with the action of G on X (cf. below). Hence, they can be as 
important in quantum kinematics as they are in gauge field theories (see, 
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e.g., Chaichian and Nelipa, 1984), especially so in relation with the 
electromagnetic interaction, which is a well-known fact. 

Clearly, in some special instances, for the case of the regular vector 
representation of G one can set tp(x; q) = 0 without loss of generality, and 
thus it is also possible to adjust a configuration vector representation within 
W(G). 

3. GAUGE TRANSFORMATIONS OF CONFIGURATION RAY 
REPRESENTATIONS 

The 2-cocycle used in a given representation corresponds to the 
analytical expression of the selection of representatives from the unitary ray 
operators. Hence, if one changes the selection, one gets a gauge transfor- 
mation (of the second kind) of the general form 

U~ ') (q) = {exp[iAk,k (q)] } U~ ) (q) (3.1) 

[with 2k,~(e) = 0]. Thus, one gets a new exponent function, given by 

ek'(q'; q) = ~bk(q'; q) + )-k'k(q') + Ak'k(q) -- )'k'k[g(q'; q)] (3.2) 

which also satisfies equation (2.2). The generators of the new 2-cocycle are 
then given by 

r~')(q) = r~)(q) - Xa(q)Ak,k(q) + k,  
(3.3) (k') (k) l~ (q) = la (q) -- Ya(q)Ak'k(q) + k~ 

and thus a set of new ray constants follows: 
/ C k~b = kab + f abkc (3.4) 

where we have written ka = 2k'k.~(e). Two exponents related in this fashion 
are called equivalent. Hence, one has the familiar result: every unitary ray 
representation o f  G defines in a unique way only a class of  equivalent 
2-cocycles. The following feature is also interesting: a general gauge trans- 
formation of the ray constants as stated in equation (3.4), with ka arbitrary, 
is a necessary and sufficient condition for obtaining a gauge transformation 
of the exponent function as given in equation (3.1). Let us briefly refer to 
these gauge transformations as A-transformations. In equation (3.1) one 
assumes a transformation kob ~ k ' b  of the ray constants in general. How- 
ever, in the special case k~ = 0  (i.e., k~b =/cab), one has a restricted 
A-transformation. (For details, see paper I.) 

Let us also recall that trivial unitary ray representations are those 
whose exponent functions are coboundaries of the form 

tk(q'; q) = 2[g(q'; q)] -- 2(q') -- 2(q) (3.5) 
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They are nothing but gauge artifacts. [In the jargon of cohomology theory, 
genuine extensions of G by U(1) are characterized by the second cohomol- 
ogy group H2[G, U(1)] (i.e., cocycles/coboundaries)]. So, trivial exponent 
generators are given by 

ro(q) = Xa(q)2(q) -- k , ,  la(q) = Ya(q)2(q) - ka (3.6) 

[here we set k a = 2a(e)], and therefore the corresponding trivial ray con- 
stants are given by k~b =f~bkc, as we have already mentioned. It is clear 
that a necessary and sufficient condition for having a trivial two-cocycle is 
that all the ray constants are trivial. Furthermore, it is also rather clear that 
one cannot eliminate a genuine (i.e., nontrivial) ray representation of G by 
means of a 2-transformation. [As has been said, trivial unitary ray repre- 
sentations of G correspond to the local direct product of G by U(1); i.e., 
U~ ) (q) = e - i2(q) UL (q).] 

Finally, let us add a comment on the special #-gauge defined in 
equation (2.3). In order to transform a given unitary ray representation 
into this gauge one uses 2k(q)=--�89 as generator of the required 
2-transformation. However, one still has some remaining gauge freedom 
for selecting the representative operators within the #-gauge. Indeed, this 
freedom entails the property 2k(q)+ 2k(#)= 0, which must be satisfied 
everywhere by the gauge generating function. Note that within the #-gauge 
one has ~bg(q'; q ) +  ~bk(q; (~t)-~. 0 and l ~ ( q ) =  r(k)(#) (cf. paper I for de- 
tails). 

Our task is now to discuss the consequences of equation (3.1) within 
the configuration ray representation formalism. It is immediate that a 
2-transformation induces a gauge transformation on the phase function of 
the configuration ray representation; namely 

~Ok'(X; q) = q~k(X; q) + •k'k(q) (3.7) 

Moreover, because of the induced gauge transformation (3.2) on C~k(q'; q), 
the 2-point functional relation (2.10) is gauge invariant under 2-transfor- 
mations (3.1) and (3.7). Furthermore, equation (3.7) produces the follow- 
ing transformation on the phase generators of the configuration ray 
representation: 

a(f~(x) = tr(~kl(X) + k~ (3.8) 

where one defines the constants k = 2~ g'k~ = t~a,~,(k;k)(q)lq= e as in equation 
(3.4). 

One can prove in fact that configuration ray representations are gauge 
covariant under 2-transformations. Indeed, equations (2.10) and (2.13)- 
(2.15) all become covariantly transformed upon (3.1). (In the applications, 
one is mainly interested in restricted 2-transformations.) 



1628 Krause 

Within the configuration ray representation formalism, one also has 
some gauge freedom for fixing the phase of the kets Ix) themselves locally 
in space X; i.e., one sets 

Ix) ~ ]x )x = eiX(X)lx > (3.9) 

This change of gauge is completely independent of the gauge one adopts 
for the regular ray representation. Of course, 2 is an arbitrary function of 
x. As a consequence of equation (3.9), one has to change the phase 
function accordingly; namely, one sets 

q~,(x; q) = tpk(x; q) + 2(x) -- 2[f(x; q)] (10) 

where, clearly, q~,(e;x)= ~0k(e; x ) = 0 .  The functional relation (2.10), as 
well as equation (2.11), remain invariant under these transformations. 
From equation (3.10) one obtains 

o'S(k) (x) = a (~*) (x) -- Za (x)2(x) (3.11) 

which states the corresponding transformation law for the phase generators 
[e.g., equation (2.18)]. 

In this fashion, it can be shown that the whole formalism of phase 
calculus for configuration ray representations remains invariant under 
transformations (3.9). Thus the solutions to the differential equations 
(2.13) and (2.14) are defined only up to a local U(1) transformation as 
defined in equation (3.9). Again, even in the case when G admits genuine 
ray representations, these arbitrary local U(1) transformations of the 
associated configuration ray representations can play an interesting role in 
non-Abelian quantum kinematics and dynamics. Certainly, the local substi- 
tution (3.9) brings the quantum kinematic formalism very close to the 
formalism of gauge field theory (cf. Chaichian and Nelipa, 1984). 

4. THE GENERATING WAVE FUNCTIONS <xlq>L 
We are now ready to examine the main idea of configuration ray 

representation theory. Namely, assuming the (rigged) Hilbert space ~V~(G), 
let us discuss the possibility of having a family of kets I x )  endowed with 
the fundamental ray property stated in equation (2.8). Thus we set, ex 
hypothesis 

Ix; k )  = fd#L(q) ~k~'(x; q)lq)L (4.1) 

where we define the wave function 

q~k(x; q) = <x; klq>L (4.2) 
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on X x M(G). The continuous basis {[q)L } is orthogonal and complete in 
~ ( G )  with respect to the left invariant measure of G in M(G). Henceforth, 
we write Ix; k )  instead of Ix) [as we did in equation (2.8) for short], 
because these vectors depend on the ray constants. In this paper we are 
interested only in the existence of such kets Ix; k )  within the rigged Hilbert 
space attached with the carrier space oVg(G) of the regular representation. 
Here we shall not dwell on their physical applications (Krause, 1993c). 

Upon substitution of equation (4.1) into (2.8), a straightforward 
calculation yields the following functional relation: 

Ok[X; g(q,  q')] e -r = •k[f(x; q); q'] e -'~~ (4.3) 

which must be satisfied by q/k for all q, q'~M(G) and all x~X.  Hence, if 
one sets q ' =  q in this relation, one obtains 

~k[f(x; q); q] = Ck(x; e) e e*~ (x;q) (4.4) 

from which 

Ok(X; q) = ~k[f(x; c])] exp{iq~k[f(x; ~); q]} (4.5) 

follows. Here we have defined the generating wave function ~(x)  of the 
configuration ray representation at the identity point e sM(G): 

~k(x) = (x; k[e)L (4.6) 

Equation (4.5) is the basic result. In particular, if one adopts the #-gauge 
[i.e., equation (2.11)] (as one does in the applications), then equation (4.5) 
reads 

~kk(x; q) = ~k[f(x; ~)] exp[ -  iq~k(x; ~)] (4.7) 

So, given an allowable phase function q~k(X; q) and any generating wave 
junction ~k(x), one can construct a configuration ray representation of  G 
within ~(G).  This representation is carried by vectors of the general form 

t" 
Ix; k )  = ~ d#z~(q) ~*[f(x; ~)] exp{-iq)k[f(x; ~); q]}lq)/- (4.8) 

The generating function ~k(x) is completely arbitrary [provided Ix; k )  
9(~(G)]. Indeed, it is a straightforward matter to show that all kets Ix; k )  of 
the form (4.8), where cpk(q; x) is an allowable phase function and ~k(x) is 
a given function, will automatically satisfy equation (2.8). On the other 
hand, if one takes the derivative limits limq_~eO~ and limq,~eO" ~ in the 
functional relation (4.3), one obtains two sets of linear partial differential 
equations for the wave function ~bk(x; q). Then, after some standard 
manipulations of non-Abelian calculus, one shows that the most general 
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solution to these equations is precisely of the form stated in equation (4.5) 
with ~k(X) an arbitrary function of x. We here omit the proof of this 
theorem for the sake of briefness. 

Hence, it is well established that one has a set of kets Ix; k )  belonging 
to the (rigged) Hilbert space of the regular representation of G, each 
carrying a configuration ray representation of the group. Since the generat- 
ing function ~k(x) remains arbitrary, the formalism has a debarrb d'excess 
(as it must indeed, because thus far the analysis has been purely kinematic). 
In the applications of non-Abelian quantum kinematics to dynamics, one 
determines r on physical grounds, by means of some suitable super- 
selection rules (cf. Krause, 1993c). 

5. MISCELLANEOUS EXAMPLES 

In this section we present two examples of phase calculus on 
X x M(G), which correspond to the following groups: (a) the Galilei group 
in one-dimensional space, and (b) the Newtonian group of the simple 
harmonic oscillator. 

The physical applications of these examples have already been consid- 
ered in two previous papers, but their detailed construction was omitted 
there (Krause, 1986, 1988). 

5.1. The Galilei Group in One-Dimensional Space 

Let us consider the Galilei group in one-dimensional space: 

t" = t + ql, x '  = x + q 2 _  q3 t (5.1) 

whose infinitesimal operators are given by 

Zl(t ,x)  =~t, Z2(t,x) = ~ x ,  Z 3 ( t ,  .,~ ) : -t(~ x ( 5 . 2 )  

Hence the well-known nilpotent Lie algebra follows: 

[Z~, Zz] = 0, [Zl, Z3] = - Z 2 ,  [Z2, Z3] = 0 (5.3) 

We next apply "phase calculus" to this particular realization of the 
group. To obtain a set of phase generators, one has to solve the system of 
equations (2.15), which now becomes 

O'(lk ) - -  0"(2k~ = k12 , --ta(~)~ - a~,~)~ = k23 ( 5 . 4 )  

Indeed, as it follows immediately from the Lie algebra (5.3), of the three 
possible ray cons t an t s  {kl2 , k23 , k13}, k13 is necessarily trivial. The most 
general solution to equations (5.4) can be written as 
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1 
~k)(t, X) = 2 kl2x + u(t, X) 

a~2k)(t, X) = --~ k12t + dt' u,,(t', x) + v(x) (5.5) 

~r~)(t, x) = -k23x  - t dr" u . ( t ' ,  x) - tv(x) + C 

where u(t, x) and v(x) are arbitrary functions and C is an arbitrary 
constant. Therefore, if one performs a local U(1) transformation, generated 
by 

2(t, x) = dr' u(t', x) + dx" v(x') (5.6) 

one reduces this solution to 

1 k 1 t~k)(t.X)--'--~ 12 X, 6(2~)(t,x)=--~ki2 t, t r~k)( t ,x )=-k23x + C  (5.7) 

We then consider equation (2.13), for obtaining the phase function 
tpk(t, x; q) associated with the 2-cocycle 

1 1 q~,(q,;q) ~kl2[q,l(q2_q,3ql) q,2qt] = -- +-~kz3[q q _q,3(q2+qlq3)] p2 3 

(5.8) 

(cf. paper I), which belongs to the gauge #(q)= 0. It is a simple exercise to 
show that, because of the 2-transformation generated by 2(q) = Cq 3, one 
can take C = 0 in equation (5.7) without loss of generality. Hence, using 
Xa(q) and r~)(q) as given in paper I, we conclude that the system (2.13) 
now becomes 

1 
aj q~k(t, x; q) = ~ k12(x - q3t) 

1 
~2q~k(t, x; q) = - ~  kl2t k23q 3 (5.9) 

, (  l) 
03~pk(t,x;q) = -~k12q  t -k23 x - q 3 t  +_~q2 

which we readily integrate with the initial condition tPk(t, X; 0, 0, 0 ) =  0. 
Thus we obtain the configuration phase function 

q~k(t, x; ql, q2, q3) = ~kl2 [ql x _ (q2 + qlq3)t ] _ k2aq3(2x + q2 _ q3t) 

(5.10) 
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which belongs to the #-gauge. This phase function of the Galilei group was 
used to obtain the spacetime propagator kernel of a scalar Newtonian free 
particle by purely group-theoretic arguments (Krause, 1988). 

It is clear that one may also consider the Galilei group as an active 
symmetry group which transforms one worldline of a free particle into 
another, i.e., 

x(t)  = at + fl ~ x ' ( t ' )  = ct't + [3' (5.11) 

One easily proves that under a Galilei transformation the classical state 
(~, t )  of the system transforms into a new state (~', fl') given by 

0 ~ ' = ~  + q  3 , f l ' = f l - - o ~ q l + ( q 2 - - q l q  3 ) (5.12) 

This point transformation in classical state space {(~, fl)} sets a new 
realization of the Galilei group, for which one may also calculate a phase 
function ~0k(~, [3; q) as well as representation kets I~, t >  according to the 
techniques presented in this paper. Such a realization of the group in 
classical state space (i.e., not precisely the phase space) gives rise to a 
complementary ray representation of much physical interest from the 
standpoint of quantum kinematics. This subject shall be considered else- 
where. 

5.2. The Newtonian Group of the Simple Harmonic Oscillator 

We next consider the Newtonian point symmetry group attached to 
the equation of motion 5~ + co2x = 0; namely 

t '  = t + q~, x '  = x + q2 cos cot + q3 sin cot (5.13) 

The infinitesimal operators of this realization are given by 

Z ~ ( t , x ) = O , ,  Z 2 ( t , x ) = ( c o s c o t ) O x ,  Z 3 ( t , x ) = ( s i n c o t ) O x  (5.14) 

and the Lie algebra is as follows: 

[zl ,  z2] = -coz3,  [z , ,  z d  = coz2, [z2, z d  = 0 (5.15) 

Thus, this group has just one genuine ray constant: k23 ~ 0. Therefore, the 
differential equations (2.15) for the phase generators read 

(if(k) jr iff(k)) t _ ico(Cr(2 k) jr  ia(k)) ---- oicott,~(k) 
(5.16) 

((r(3 k) cos cot - a(2 k) sin cot),x = k 

with k = -k23. After performing a suitable local U(1) transformation, the 
general solution to these equations can be cast in the form 

o']k)(t, X) = 0, O'(2k)(/, X) = - - k x  sin cot ,  O'(3k)(t, x) = k x  cos cot (5.17) 



Configuration Ray Representations 1633 

We then use these phase generators to obtain a configuration phase 
function according to equation (2.13). Therefore we consider the following 
2-cocycle: 

1 t2 2 q~k(q'; q) = ~ k[(q ) + (q'3)2][tg o (q"  + ql) _ tg 09q '1] 

+ ~ k[(q2) a + (q3)2][tg r '1 + q ~) - tg r '] 

1 t2 2 /3 3 + ~ k ( q  q + q  q )[cosogqltgco(q'l +q l ) - s ino~q l ]  

1 t3 2 /2 3 + ~ k ( q  q - q  q )[sin~oq I tgco(q ' 1 + q l )  +cosogql] (5.18) 

already obtained in paper I, which belongs to the #-gauge, and whose right 
phase generators are given by 

1 r~k)(q) = 4 k~[(qZ)2 nt_ (q3)2] see 2 r 

1 
r (2 ~) (q) = - ~ kq 3 see a)q i (5.19) 

1 2 1 r~k)(q) = -~ kq sec ogq 

The Lie operators Xu(q) of the group are as follows: 

X 1 = 01 ,  X 2 = (cos 09q l)02 -- (sin ~oq 1)03, 
(5.20) 

X 3 = (sin ( o q l ) 0 2  + (COS (-oq 1)03 

Hence the equations we have to solve are of the form [cf. equation (2.13)] 

01 q~(t, x; q) 

= _ ~  k~o[(q2)2 + (q3)3] sec 2 r (5.21a) 

[(cos ~oq 1)02 -- (sin coq l)O3]~0k(t, X; q) 

= --k(x +q2cos~ot  +q3  sin ogt) s in~( t  + q l )  + k q 3  sec o9ql (5.21b) 

[(sin o~ql)02 + (cos coq~)a3]~0k(t, x; q) 

k q2 (5.21c) = k ( x + q 2 c o s o ) t + q 3 s i n o ~ t ) c o s o 3 ( t + q l ) - ~  secmq I 
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One integrates equation (5.21a) immediately: 

k ~Ok(t, X; q) = --~ [(q2)2 + (q3)2] tg ogq I + u(t, X; q2, q3) (5.22) 

while equations (5.21b) and (5.21c) can be written in the form 

(02 "{- i03)(Pk(t , X; q) 

k 2 e -i~ (5.23) = ik(x + q2 cos cot + q3 sin cot) e i~ - i ~  (q + iq 3) sec oq ~ 

Then a rather lengthy (but easy) process of integration, taking into account 
the initial condition (2.9), yields the desired answer: 

k k 
(pk(t, X; ql, q2, q3) = - - 4  [(q2)2 q_ (q3)2] tg coql _ 4 [(q2)2 __ (q3)2] sin 2cot 

k 2 3 + ~ q  q cos 2cot -- kx(q z sin cot - q3 cos cot) (5.24) 

which belongs to the/t-gauge indeed. One may check this solution against 
the 2-point functional relation (2.10) quite directly, with (~k given in (5.18). 

In another paper we have studied the quantum-kinematic model of the 
simple harmonic oscillator obtained from its Newtonian symmetry group. 
The regular ray representation, together with the configuration ray repre- 
sentation, of the Newtonian symmetry group of the System are enough to 
deduce the usual quantum mechanical model of the simple harmonic 
oscillator. In particular, the spacetime propagator kernel was obtained by 
means of this technique. No canonical quantization was used to this end 
(Krause, 1986). 

Once again, here we can also treat an active symmetry group which 
transforms one wordline of the system into another, i.e., 

x(t) = ~ cos cot + fl sin cot ~ x'(t ') = ~' cos cot' + fl' sin cot' (5.25) 

Indeed, after some simple manipulations, one obtains the following realiza- 
tion of the group in classical state space {(~, fl)}: 

[~']=F c~ - s i n c o q r ] [ ~  +q2"] (5.26) 
3' Lsin coq, cos coql j + q3j 

(By the way, we observe that the Newtonian spacetime group of the simple 
harmonic oscillator is a realization of the two-dimensional Euclidean group 
E2 of the plane.) The (~t, fl) realization of the group introduces another 
complementary ray representation for the description of the system; i.e., 
one also has kets [~t, fl>~C~(G) such that 

U(rk)(q) I~, fl > = e '~'k (~'~;q)l~', fl'> (5.27) 
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where (~', fl') are given in equation (5.26). The phase function tpk(~, fl; q) 
as well as the kets I~, fl)  are well determined by the method presented in 
this paper. The relation of these ("as classical as possible") states t~, fl)  of 
quantum kinematics with the familiar coherent states of the harmonic 
oscillator will be discussed elsewhere. 

6. CONCLUDING REMARKS 

The techniques presented in this paper are well suited for the purposes 
of quantum kinematics. Some comments on this subject seem to be in order 
since we are now in possession of  a broader perspective from which to 
understand this matter. 

As the reader may have observed, all quantum-kinematic manipula- 
tions look quite familiar. Nevertheless, one must bear in mind the very 
meaning of the configuration representation kets Ix), otherwise one could 
miss the point. Let us write them more explicitly: Ix) = I t, x> [cf. equation 
(2.5) with t = x ~ and x = ( x l , . . . ,  xn)]. In order to clarify this point, we 
have to recall that in quantum mechanics one sets the wave function 
~kQM(t , X) = (xl~b; t )  instead of ~QK(t, X) = (t, XI~k ) as one does in quan- 
tum kinematics. In fact, ordinary quantum mechanics rests on a time 
evolution law, 

lip; t ' )  = exp[ -- (i/h)(t" - t)H] [~k; t )  (6.1) 

while quantum kinematics assumes a kind of holistic evolution law in X over 
the whole group manifold [cf. equation (2.8)]: 

It', x ' )  = ]f~ x; q), f(t, x; q)) = exp[ - iq~k(t, x; q)]U~)(q)[t, x)  (6.2) 

which takes into account a/ / the point symmetries of the system. Hence, the 
usual formalism of quantum mechanics is rather different from the general- 
ized quantum-kinematic approach, for it treats time as a c-number while it 
quantizes x, contrary to the relativistic requirement. On the other hand, 
quantum kinematics is intrinsically 'relativistic' in a very broad sense 
indeed (Mariwalla, 1975). It could be said that non-Abelian quantum 
kinematics lies somehow midway between quantum mechanics and quan- 
tum field theory. [For instance, in quantum kinematics one treats the 
carrier space ~ ( G )  as an incoherent rigged Hilbert space.] 

Furthermore, in the application of non-Abelian quantum kinematics 
to dynamics, one identifies the allowed physical configuration spacetime 
kets It, x> by means of super selection rules dictated by the quantum-kine- 
matic invariant operators (Krause, 1991). Then, after finding the physical 
generating wave function ~k(t, x ) =  (t, xle)L one calculates the transition 
amplitude: 



1636 Krause 

f -- ~ I t .  (t, xlt', x ' )  ---- d/~1.(q) ~g[f(t, x; q)~k[f(t ,  X, ~)] 

X exp{-  i[~Ok(t, X; ~) -- ~0k(t', X'; ~)]} (6.3) 

which corresponds precisely to the configuration spacetime propagator 
kernel of the system. In fact, in a recent paper (Krause, 1993c) we have 
shown that in order to satisfy the superselection rules, the physical generat- 
ing function ~k(X) has to be a solution of a system of fundamental 
eigenvalue wave equations, which one has to solve in configuration space- 
time in order to get the desired dynamical model. These are coupled 
eigenvalue wave equations of the general form 

1 b 

One gets such equations for each compatible superselection rule 
(e = 1 . . . . .  s < r) and one solves them simultaneously. We refer to (6.4) as 
the generalized Schr6dinger equations of quantum kinematics. The S~ are 
functions of the quantum-kinematic invariant operators. Their functional 
form is known because some of them are Casimir operators of the Lie 
algebra, while other are some of the quantum-kinematic invariant opera- 
tors R~ ~ themselves. Of course, they all commute among themselves, and 
furthermore they commute with all the generators of the left regular (ray) 
representation. 

Indeed, in the non-Abelian quantum-kinematic approach to dynamics, 
these generalized Schr6dinger equations play the central role in the theory, 
in the same sense as the usual Schr6dinger equation plays the central role 
in ordinary quantum mechanics. In particular, for an isolated system, time 
translation is a symmetry operation and therefore the usual Schr6dinger 
equation will come automatically into the fore as one of the eigenvalue 
equations belonging to the system (6.4) of generalized wave equations. This 
means that the known functional form of the corresponding superselection 
operator, say So = So(R(k)), allows the explicit calculation of the Hamilto- 
nian operator within the quantum kinematic model itself, as one foregoes 
the use of a 'gedanken' classical analog. 

Note that there is really no transition s --~ e(2) between the eigenvalues 
e,, for in evaluating the left-invariant integral (6.3) a multiple delta 
function 6<s)(c(2); e(l)) is factorized out. (One gets Dirac deltas for the 
continuous spectra and Kronecker deltas for the discrete ones as necessary 
consequences of the superselection rules.) Therefore, the Hurwitz invariant 
integral (6.3) (covering the whole group manifold) corresponds to the 
propagator kernel in configuration spacetime X associated with the funda- 
mental system of generalized Schr6dinger wave equations (6.4). [This 



Configuration Ray Representations 1637 

approach was used successfully in Krause (1986, 1988).] Work  is in progress 
on this group-theoretic approach to quantum kinematics and dynamics. 

Hence, concerning the general mathematical  techniques for settling 
configuration ray representations of  noncompact  Lie groups, we deem our 
task as already complete. In many aspects, it seems that quantum kinemat- 
ics comes very close to affording a new quantum mechanical theory that 
generalizes the standard theory of  quantum mechanics. Such a theory 
might provide more insight into the role that  symmetry plays in quantum 
physics. However, we do not know whether such a generalized quantum 
mechanics is possible at all. I f  it is possible, it would be an important  
theoretical achievement, especially in the realm of  high-energy physics. 
Much remains to be done in this intriguing area, which we deem as 
deserving further formal research as well as more applications. 
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